Dilated Cardiomyopathy (DCM) Panel

SEQmethod-seq-icon Our Sequence Analysis is based on a proprietary targeted sequencing method OS-Seq™ and offers panels targeted for genes associated with certain phenotypes. A standard way to analyze NGS data for finding the genetic cause for Mendelian disorders. Results in 21 days. DEL/DUPmethod-dup-icon Targeted Del/Dup (CNV) analysis is used to detect bigger disease causing deletions or duplications from the disease-associated genes. Results in 21 days. PLUSmethod-plus-icon Plus Analysis combines Sequence + Del/Dup (CNV) Analysis providing increased diagnostic yield in certain clinical conditions, where the underlying genetic defect may be detectable by either of the analysis methods. Results in 21 days.

Test code: CA2201

The Blueprint Genetics Dilated Cardiomyopathy (DCM) Panel is a 27-gene test for genetic diagnostics of patients with clinical diagnosis of cardiomegaly or dilated cardiomyopathy (DCM).

In majority of the cases familial dilated cardiomyopathy (DCM) is inherited in an autosomal dominant manner. In rare instances, this condition is inherited in an autosomal recessive pattern. In other rare cases, DCM can be inherited in an X-linked pattern. Establishing a genetic diagnosis confirms or modifies the clinical diagnosis and enables disease specific estimates on prognostics and treatment paths. Genetic diagnosis enables effective family member risk stratification and preventive measures for the mutation carriers. The Dilated Cardiomyopathy Panel is included in the Cardiomyopathy Panel and the Comprehensive Cardiology Panel.

About Dilated Cardiomyopathy (DCM)

DCM is one of the major subtypes of cardiomyopathies. It is typically associated with significant dilation of cardiac chambers, especially the left ventricle, thinning of myocardial wall and systolic dysfunction. It is a common cause for heart failure, sudden cardiac death and the most common cause for heart transplantation. During the past decade there has been major breakthroughs in the understanding of the molecular genetic origin of the idiopathic form of DCM. Similarly to hypertrophic cardiomyopathy genetic diagnostics is becoming a standard procedure in the diagnostic work-up of patients suffering from non-ischemic form of DCM. The era of genetics and studies on large patient and family cohorts are revealing that the classical DCM disease with end stage heart failure and severe symptoms represents only the tip of the iceberg in this disorder. The phenotypic spectrum of DCM is changing as we are now identifying individuals and family members harboring DCM mutations but manifesting with less severe cardiac phenotype. The revealing of genetic origin of the disease and the wide spectrum of disease manifestation, have been now acknowledged and it is estimated that DCM prevalence is higher than 1:2500 suggested previously.

Availability

Results in 3-4 weeks.

Genes in the Dilated Cardiomyopathy (DCM) Panel and their clinical significance
GeneAssociated phenotypesInheritanceClinVarHGMD
ABCC9Atrial fibrillation, Cantu syndrome, Dilated cardiomyopathy (DCM)AD1831
BAG3Dilated cardiomyopathy (DCM), Myopathy, myofibrillarAD2148
DESDilated cardiomyopathy (DCM), Myopathy, myofibrillarAD/AR5195
DMDBecker muscular dystrophy, Duchenne muscular dystrophy, Dilated cardiomyopathy (DCM)XL4893390
DSC2Arrhythmogenic right ventricular dysplasia with palmoplantar keratoderma and woolly hair, Arrhythmogenic right ventricular dysplasiaAD/AR1666
DSG2Arrhythmogenic right ventricular dysplasia, Dilated cardiomyopathy (DCM)AD32102
DSPCardiomyopathy, dilated, with wooly hair, keratoderma, and tooth agenesis, Arrhythmogenic right ventricular dysplasia, familial, Cardiomyopathy, dilated, with wooly hair and keratodermaAD/AR101195
EMDEmery-Dreifuss muscular dystrophyXL28111
FBXO32Dilated cardiomyopathy (DCM)AD/AR2
HCN4Sick sinus syndrome, Brugada syndromeAD724
JUPArrhythmogenic right ventricular dysplasia, Naxos diseaseAD/AR1028
LAMP2Danon diseaseXL4681
LMNAHeart-hand syndrome, Slovenian, Limb-girdle muscular dystrophy, Muscular dystrophy, congenital, LMNA-related, Lipodystrophy (Dunnigan ), Emery-Dreiffus muscular dystrophy, Malouf syndrome, Dilated cardiomyopathy (DCM)AD/AR183458
MYBPC3Left ventricular noncompaction, Hypertrophic cardiomyopathy (HCM), Dilated cardiomyopathy (DCM)AD/AR390707
MYH6Hypertrophic cardiomyopathy (HCM), Dilated cardiomyopathy (DCM)AD961
MYH7Hypertrophic cardiomyopathy (HCM), Myopathy, myosin storage, Myopathy, distal, Dilated cardiomyopathy (DCM)AD/AR285748
PKP2*Arrhythmogenic right ventricular dysplasiaAD94229
PLEKHM2Dilated cardiomyopathy (DCM), left ventricular noncompactionAD/AR11
PLNHypertrophic cardiomyopathy (HCM), Dilated cardiomyopathy (DCM)AD/AR821
RAF1LEOPARD syndrome, Noonan syndrome, Dilated cardiomyopathy (DCM)AD3742
RBM20Dilated cardiomyopathy (DCM)AD1322
SCN5AHeart block, nonprogressive, Heart block, progressive, Long QT syndrome, Ventricular fibrillation, Atrial fibrillation, Sick sinus syndrome, Brugada syndrome, Dilated cardiomyopathy (DCM)AD/AR/Digenic193795
TCAPMuscular dystrophy, limb-girdle, Hypertrophic cardiomyopathy (HCM), Dilated cardiomyopathy (DCM)AD/AR1024
TNNT2Left ventricular noncompaction, Hypertrophic cardiomyopathy (HCM), Cardiomyopathy, restrictive, Dilated cardiomyopathy (DCM)AD56114
TPM1Hypertrophic cardiomyopathy (HCM), Dilated cardiomyopathy (DCM)AD3662
TTN*Hypertrophic cardiomyopathy (HCM), Dilated cardiomyopathy (DCM)AD437226
VCLHypertrophic cardiomyopathy (HCM), Dilated cardiomyopathy (DCM)AD1219
  • * Some regions of the gene are duplicated in the genome leading to limited sensitivity within the regions. Thus, low-quality variants are filtered out from the duplicated regions and only high-quality variants confirmed by other methods are reported out. Read more.

Gene, refers to HGNC approved gene symbol; Inheritance to inheritance patterns such as autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL); ClinVar, refers to a number of variants in the gene classified as pathogenic or likely pathogenic in ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/); HGMD, refers to a number of variants with possible disease association in the gene listed in Human Gene Mutation Database (HGMD, http://www.hgmd.cf.ac.uk/ac/). The list of associated (gene specific) phenotypes are generated from CDG (http://research.nhgri.nih.gov/CGD/) or Orphanet (http://www.orpha.net/) databases.

Blueprint Genetics offers a comprehensive dilated cardiomyopathy (DCM) panel that covers classical genes associated with cardioegaly and dilated cardiomyopathy (DCM). The genes are carefully selected based on the existing scientific evidence, our experience and most current mutation databases. Candidate genes are excluded from this first-line diagnostic test. The test does not recognise balanced translocations or complex inversions, and it may not detect low-level mosaicism. The test should not be used for analysis of sequence repeats or for diagnosis of disorders caused by mutations in the mitochondrial DNA.

Please see our latest validation report showing sensitivity and specificity for SNPs and indels, sequencing depth, % of the nucleotides reached at least 15x coverage etc. If the Panel is not present in the report, data will be published when the Panel becomes available for ordering. Analytical validation is a continuous process at Blueprint Genetics. Our mission is to improve the quality of the sequencing process and each modification is followed by our standardized validation process. All the Panels available for ordering have sensitivity and specificity higher than > 0.99 to detect single nucleotide polymorphisms and a high sensitivity for indels ranging 1-19 bp. The diagnostic yield varies substantially depending on the used assay, referring healthcare professional, hospital and country. Blueprint Genetics’ Plus Analysis (Seq+Del/Dup) maximizes the chance to find molecular genetic diagnosis for your patient although Sequence Analysis or Del/Dup Analysis may be cost-effective first line test if your patient’s phenotype is suggestive for a specific mutation profile. Detection limit for Del/Dup analysis varies through the genome from one to six exon Del/Dups depending on exon size, sequencing coverage and sequence content.

The sequencing data generated in our laboratory is analyzed with our proprietary data analysis and annotation pipeline, integrating state-of-the art algorithms and industry-standard software solutions. Incorporation of rigorous quality control steps throughout the workflow of the pipeline ensures the consistency, validity and accuracy of results. The highest relevance in the reported variants is achieved through elimination of false positive findings based on variability data for thousands of publicly available human reference sequences and validation against our in-house curated mutation database as well as the most current and relevant human mutation databases. Reference databases currently used are the 1000 Genomes Project (http://www.1000genomes.org), the NHLBI GO Exome Sequencing Project (ESP; http://evs.gs.washington.edu/EVS), the Exome Aggregation Consortium (ExAC; http://exac.broadinstitute.org), ClinVar database of genotype-phenotype associations (http://www.ncbi.nlm.nih.gov/clinvar) and the Human Gene Mutation Database (http://www.hgmd.cf.ac.uk). The consequence of variants in coding and splice regions are estimated using the following in silico variant prediction tools: SIFT (http://sift.jcvi.org), Polyphen (http://genetics.bwh.harvard.edu/pph2/), and Mutation Taster (http://www.mutationtaster.org).

Through our online ordering and statement reporting system, Nucleus, the customer can access specific details of the analysis of the patient. This includes coverage and quality specifications and other relevant information on the analysis. This represents our mission to build fully transparent diagnostics where the customer gains easy access to crucial details of the analysis process.

In addition to our cutting-edge patented sequencing technology and proprietary bioinformatics pipeline, we also provide the customers with the best-informed clinical report on the market. Clinical interpretation requires fundamental clinical and genetic understanding. At Blueprint Genetics our geneticists and clinicians, who together evaluate the results from the sequence analysis pipeline in the context of phenotype information provided in the requisition form, prepare the clinical statement. Our goal is to provide clinically meaningful statements that are understandable for all medical professionals, even without training in genetics.

Variants reported in the statement are always classified using the Blueprint Genetics Variant Classification Scheme modified from the ACMG guidelines (Richards et al. 2015), which has been developed by evaluating existing literature, databases and with thousands of clinical cases analyzed in our laboratory. Variant classification forms the corner stone of clinical interpretation and following patient management decisions. Our statement also includes allele frequencies in reference populations and in silico predictions. We also provide PubMed IDs to the articles or submission numbers to public databases that have been used in the interpretation of the detected variants. In our conclusion, we summarize all the existing information and provide our rationale for the classification of the variant.

A final component of the analysis is the Sanger confirmation of the variants classified as likely pathogenic or pathogenic. This does not only bring confidence to the results obtained by our NGS solution but establishes the mutation specific test for family members. Sanger sequencing is also used occasionally with other variants reported in the statement. In the case of variant of uncertain significance (VUS) we do not recommend risk stratification based on the genetic finding. Furthermore, in the case VUS we do not recommend use of genetic information in patient management or genetic counseling. For some cases Blueprint Genetics offers a special free of charge service to investigate the role of identified VUS.

We constantly follow genetic literature adapting new relevant information and findings to our diagnostics. Relevant novel discoveries can be rapidly translated and adopted into our diagnostics without delay. These processes ensure that our diagnostic panels and clinical statements remain the most up-to-date on the market.

Find more info in Support
Download PDF

Full service only

Choose an analysis method

$ $ 1400
$ $ 1000
$ $ 1600

Extra services

$ 500
Total $
Order now

ICD & CPT codes

CPT codes

SEQ81479
DEL/DUP81479


ICD codes

Commonly used ICD-10 codes when ordering the Dilated Cardiomyopathy (DCM) Panel

ICD-10Disease
I42.0Dilated cardiomyopathy (DCM)

Accepted sample types

  • EDTA blood, min. 1 ml
  • Purified DNA, min. 5μg
  • Saliva (Oragene DNA OG-500 kit)

Label the sample tube with your patient’s name, date of birth and the date of sample collection.

Note that we do not accept DNA samples isolated from formalin-fixed paraffin-embedded (FFPE) tissue.