Hyperlipidemia Panel

SEQmethod-seq-icon Our Sequence Analysis is based on a proprietary targeted sequencing method OS-Seq™ and offers panels targeted for genes associated with certain phenotypes. A standard way to analyze NGS data for finding the genetic cause for Mendelian disorders. Results in 21 days. DEL/DUPmethod-dup-icon Targeted Del/Dup (CNV) analysis is used to detect bigger disease causing deletions or duplications from the disease-associated genes. Results in 21 days. PLUSmethod-plus-icon Plus Analysis combines Sequence + Del/Dup (CNV) Analysis providing increased diagnostic yield in certain clinical conditions, where the underlying genetic defect may be detectable by either of the analysis methods. Results in 21 days.

Test code: CA1101

The Blueprint Genetics Hyperlipidemia Panel is an 11-gene test for genetic diagnostics of patients with clinical suspicion of disorder of lipoprotein metabolism, unspecified, familial hypercholesterolemia, lipoprotein deficiency, mixed hyperlipidaemia or other for of hyperlipidaemia.

Familial lipid disorders are inherited in an autosomal dominant and recessive manner. Genetic diagnostics can confirm or modify the clinical diagnosis in lipid disorders. It also enables effective identification of individuals carrying genetic defects that predispose to these diseases. Proband’s genetic diagnosis forms the basis for familial screening, which is especially useful for recognizing individuals whose disease has not yet manifested as abnormal lipid levels. Genetic diagnosis helps in adopting a healthy lifestyle at young age, allows early pharmacological treatment, and makes it possible to select patients with homozygous FH (HoFH) or equivalent disease (compound heterozygous or digenic heterozygous) for more aggressive treatment. Mutation detection may affect the therapy related compensation given for patients from government or insurance companies. Hyperlipidemia Panel includes the Hyperlipidemia- Core Panel.

About Hyperlipidemia

Familial lipid disorders such as hypercholesterolemia (FH) are inborn errors of metabolism that often produces high levels of blood cholesterol and predisposes to myocardial infarctions at an early age. In addition to lethal cardiovascular complications, inherited forms of hypercholesterolemia can also cause health problems related to the buildup of excess cholesterol in other tissues. If cholesterol accumulates in tendons, it causes characteristic growths called tendon xanthomas. These growths most often affect the Achilles tendons and tendons in the hands and fingers. Yellowish cholesterol deposits under the skin of the eyelids are known as xanthelasmata. Cholesterol can also accumulate at the edges of the clear, front surface of the eye (the cornea), leading to a gray-colored ring called an arcus cornealis. Familial hypercholesterolemia is usually an autosomal dominant/recessive disorder caused by mutations in LDLR, APOB, PCSK9 or LDLRAP1. Both APOB and PCSK9 related FH are clinically indistinguishable from heterozygous FH (HeFH) caused by LDLR mutations. Recessive forms of hypercholesterolemia are rare. Of these, FH associated with LDLRAP1 is clinically similar to HeFHs. On the contrary sitosterolemia, which is caused by ABCG5 and ABCG8 mutations, is a specific form of hyperlipidemia that manifests as hypercholesterolemia and high levels (30-100x normal) of plant sterols (phytosterols) in blood and other tissues. Clinical presentation of sitosterolemia includes xanthomas and coronary artery disease at an early age with conflict between the standard risk factor profile and the disease presentation. The familial lipoprotein lipase (LPL) deficiency (also called type 1 hyperlipoproteinemia) is an autosomal recessive condition distinct to other hyperlipidemias. It usually presents in childhood with very severe hypertriglyceridemia and episodic abdominal pain, recurrent acute pancreatitis, eruptive cutaneous xanthomata, and hepatosplenomegaly.

Availability

Results in 3-4 weeks. We do not offer a maternal cell contamination (MCC) test at the moment. We offer prenatal testing only for cases where the maternal cell contamination studies (MCC) are done by a local genetic laboratory. Read more.

Genes in the Hyperlipidemia Panel and their clinical significance
GeneAssociated phenotypesInheritanceClinVarHGMD
ABCA1Tangier disease, ABCA1 deficiency, HDL deficiencyAD/AR21213
ABCG5SitosterolemiaAR1037
ABCG8SitosterolemiaAR1138
APOA1Amyloidosis, systemic nonneuronopathic, HypoalphalipoproteinemiaAD/AR2675
APOBHypobetalipoproteinemia, HypercholesterolemiaAD/AR26245
APOC3Apolipoprotein C-III deficiencyAD617
APOESea-blue histiocyte disease, Dysbetalipoproteinemia, familial (Hyperlipoproteinemia), Lipoprotein glomerulopathyAD/AR3160
LDLRHypercholesterolemiaAD/AR14102027
LDLRAP1HypercholesterolemiaAR918
LPLLipoprotein lipase deficiency, Hyperlipoproteinemia, Combined hyperlipidemia, familialAD/AR40216
PCSK9HypercholesterolemiaAD1089

Gene, refers to HGNC approved gene symbol; Inheritance to inheritance patterns such as autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL); ClinVar, refers to a number of variants in the gene classified as pathogenic or likely pathogenic in ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/); HGMD, refers to a number of variants with possible disease association in the gene listed in Human Gene Mutation Database (HGMD, http://www.hgmd.cf.ac.uk/ac/). The list of associated (gene specific) phenotypes are generated from CDG (http://research.nhgri.nih.gov/CGD/) or Orphanet (http://www.orpha.net/) databases.

Blueprint Genetics offers a comprehensive hyperlipidemia panel that covers classical genes associated with disorder of lipoprotein metabolism, unspecified, familial hypercholesterolemia, lipoprotein deficiency, mixed hyperlipidaemia and other hyperlipidaemia. The genes are carefully selected based on the existing scientific evidence, our experience and most current mutation databases. Candidate genes are excluded from this first-line diagnostic test. The test does not recognise balanced translocations or complex inversions, and it may not detect low-level mosaicism. The test should not be used for analysis of sequence repeats or for diagnosis of disorders caused by mutations in the mitochondrial DNA.

Please see our latest validation report showing sensitivity and specificity for SNPs and indels, sequencing depth, % of the nucleotides reached at least 15x coverage etc. If the Panel is not present in the report, data will be published when the Panel becomes available for ordering. Analytical validation is a continuous process at Blueprint Genetics. Our mission is to improve the quality of the sequencing process and each modification is followed by our standardized validation process. All the Panels available for ordering have sensitivity and specificity higher than > 0.99 to detect single nucleotide polymorphisms and a high sensitivity for indels ranging 1-19 bp. The diagnostic yield varies substantially depending on the used assay, referring healthcare professional, hospital and country. Blueprint Genetics’ Plus Analysis (Seq+Del/Dup) maximizes the chance to find molecular genetic diagnosis for your patient although Sequence Analysis or Del/Dup Analysis may be cost-effective first line test if your patient’s phenotype is suggestive for a specific mutation profile. Detection limit for Del/Dup analysis varies through the genome from one to six exon Del/Dups depending on exon size, sequencing coverage and sequence content.

The sequencing data generated in our laboratory is analyzed with our proprietary data analysis and annotation pipeline, integrating state-of-the art algorithms and industry-standard software solutions. Incorporation of rigorous quality control steps throughout the workflow of the pipeline ensures the consistency, validity and accuracy of results. The highest relevance in the reported variants is achieved through elimination of false positive findings based on variability data for thousands of publicly available human reference sequences and validation against our in-house curated mutation database as well as the most current and relevant human mutation databases. Reference databases currently used are the 1000 Genomes Project (http://www.1000genomes.org), the NHLBI GO Exome Sequencing Project (ESP; http://evs.gs.washington.edu/EVS), the Exome Aggregation Consortium (ExAC; http://exac.broadinstitute.org), ClinVar database of genotype-phenotype associations (http://www.ncbi.nlm.nih.gov/clinvar) and the Human Gene Mutation Database (http://www.hgmd.cf.ac.uk). The consequence of variants in coding and splice regions are estimated using the following in silico variant prediction tools: SIFT (http://sift.jcvi.org), Polyphen (http://genetics.bwh.harvard.edu/pph2/), and Mutation Taster (http://www.mutationtaster.org).

Through our online ordering and statement reporting system, Nucleus, the customer can access specific details of the analysis of the patient. This includes coverage and quality specifications and other relevant information on the analysis. This represents our mission to build fully transparent diagnostics where the customer gains easy access to crucial details of the analysis process.

In addition to our cutting-edge patented sequencing technology and proprietary bioinformatics pipeline, we also provide the customers with the best-informed clinical report on the market. Clinical interpretation requires fundamental clinical and genetic understanding. At Blueprint Genetics our geneticists and clinicians, who together evaluate the results from the sequence analysis pipeline in the context of phenotype information provided in the requisition form, prepare the clinical statement. Our goal is to provide clinically meaningful statements that are understandable for all medical professionals, even without training in genetics.

Variants reported in the statement are always classified using the Blueprint Genetics Variant Classification Scheme modified from the ACMG guidelines (Richards et al. 2015), which has been developed by evaluating existing literature, databases and with thousands of clinical cases analyzed in our laboratory. Variant classification forms the corner stone of clinical interpretation and following patient management decisions. Our statement also includes allele frequencies in reference populations and in silico predictions. We also provide PubMed IDs to the articles or submission numbers to public databases that have been used in the interpretation of the detected variants. In our conclusion, we summarize all the existing information and provide our rationale for the classification of the variant.

A final component of the analysis is the Sanger confirmation of the variants classified as likely pathogenic or pathogenic. This does not only bring confidence to the results obtained by our NGS solution but establishes the mutation specific test for family members. Sanger sequencing is also used occasionally with other variants reported in the statement. In the case of variant of uncertain significance (VUS) we do not recommend risk stratification based on the genetic finding. Furthermore, in the case VUS we do not recommend use of genetic information in patient management or genetic counseling. For some cases Blueprint Genetics offers a special free of charge service to investigate the role of identified VUS.

We constantly follow genetic literature adapting new relevant information and findings to our diagnostics. Relevant novel discoveries can be rapidly translated and adopted into our diagnostics without delay. These processes ensure that our diagnostic panels and clinical statements remain the most up-to-date on the market.

Find more info in Support
Download PDF

Full service only

Choose an analysis method

$ $ 1400
$ $ 1000
$ $ 1600

Extra services

$ 500
Total $
Order now

ICD & CPT codes

CPT codes

SEQ81479
DEL/DUP81479


ICD codes

Commonly used ICD-10 codes when ordering the Hyperlipidemia Panel

ICD-10Disease
E78.01Familial hypercholesterolemia
E78.2Mixed hyperlipidaemia
E78.4Other hyperlipidaemia
E78.6Lipoprotein deficiency
E78.9Disorder of lipoprotein metabolism, unspecified
Z83.42Family history of familial hypercholesterolemia

Accepted sample types

  • EDTA blood, min. 1 ml
  • Purified DNA, min. 5μg
  • Saliva (Oragene DNA OG-500 kit)

Label the sample tube with your patient’s name, date of birth and the date of sample collection.

Note that we do not accept DNA samples isolated from formalin-fixed paraffin-embedded (FFPE) tissue.